

Division of Engineering Programs Page 1 of 5

EGC221: Digital Logic Lab

Experiment #9
Sequential Logic Design Using Verilog

Student’s Name: Reg. no.:
Student’s Name: Reg. no.:
Semester: Spring 2017 Date: 28 November 2017

Assessment:
Assessment Point Weight Grade
Methodology and correctness of results
Discussion of results
Participation

Assessment Points’ Grade:

Comments:

EGC221: Digital Logic Lab – Lab Report Experiment # 9

Division of Engineering Programs Page 2 of 5

Experiment #9:

Finite State Machines

Objectives:

The objective of this lab is to:

1. Design, simulate, and build a Divide-by-N circuit.
2. Design, simulate, and implement a sequential circuit with D flip-flops.

Procedure:

Exercise 1: Divide-by-N Circuit:

Design, simulate, and build a Divide-by-N circuit that will divide the on board clock
from 50 MHz down to ~1 Hz. The basic principle is as follows:

Figure 1. Divide-by-N (frequency divider) circuit

So, to convert a N clock cycles into one cycle, one needs to keep the output low for
N/2 cycles and high for the other N/2 cycles. So, in converting 50 MHz (50,000,000
Hz) to 1 Hz, Clock output needs to be kept low for 25,000,000 cycles and then high

EGC221: Digital Logic Lab – Lab Report Experiment # 9

Division of Engineering Programs Page 3 of 5

for the other 25,000,000 cycles. Implement the following code and verify the circuit
operation by blinking an LED at the divided rate.

//The goal of this always procedural block is to generate 1Hz clock from a
//50MHz clock that is used in the Altera FPGA board.
module Divide_by_50M_counter(clr,clk,clk_1Hz);
input clr,clk;
output clk_1Hz;
reg clk_1Hz =1'b0;
integer counter_50M =0;
always @(posedge clk, posedge clr)
begin
 if (clr)
 counter_50M <=0;
 else if (counter_50M <25000000)
 begin
 counter_50M <= counter_50M + 1;
 end
 else if (counter_50M ==25000000)
 begin
 clk_1Hz <= !clk_1Hz;
 counter_50M <=0;
 end
end
endmodule

Figure 2 shows the clock circuit of DE0-CV Board, the crystal 50 MHz buffered to four
50MHz clock.

Figure 2: Clock Circuit of the Altera FPGA Board

EGC221: Digital Logic Lab – Lab Report Experiment # 9

Division of Engineering Programs Page 4 of 5

The associated pin assignment for clock inputs to FPGA I/O pins is listed in Table 1.

Table 1: Pin Assignment of Clock Inputs
Signal Name FPGA Pin No. Description
CLOCK_50 PIN_M9 50 MHz clock input(Bank 3B)
CLOCK2_50 PIN_H13 50 MHz clock input(Bank 7A)
CLOCK3_50 PIN_E10 50 MHz clock input(Bank 8A)
CLOCK4_50 PIN_V15 50 MHz clock input(Bank 4A)

Exercise 2:
You are to design a 4-bit counter with the following inputs and functionality:

• Load (ld): if activated, count will be loaded from D_in [3:0]
• Mode: if 0, counter counts up. Otherwise, it will count down.
• Clear (clr): If activated, count will be 0
• Clock 1 Hz is generated from the previous exercise.

Complete the following code and implement it on the FPGA board.

module up_down_counter(mode,clr,ld,D_in,clk,count,clk_1Hz);
input mode,clr,ld,clk;
input [3:0] D_in;
output clk_1Hz;
output [3:0] count;
reg [3:0] count;
reg clk_1Hz =1'b0;
integer counter_50M =0;

//The goal of this always procedural block is to generate 1Hz clock from a
//50MHz clock that is used in the Altera FPGA board.

always @(posedge clk)
begin
 if (clr)
 counter_50M <=0;
 else if (counter_50M <25000000)
 begin
 counter_50M <= counter_50M + 1;
 end
 else if (counter_50M ==25000000)
 begin
 clk_1Hz <= !clk_1Hz;
 counter_50M <=0;
 end
 end

EGC221: Digital Logic Lab – Lab Report Experiment # 9

Division of Engineering Programs Page 5 of 5

//If "ld =1" we load the external data through D_in[3:0], if mode is active
// it will be counting up and if mode is inactive it will count down.

always @(posedge clk_1Hz, posedge clr)

.
.
.

endmodule

Conclusions:

